Câu 1 : Trong mặt phẳng tọa độ Oxy ; cho (E) : x^2/a^2 + y^2/b^2 = 1 ( a > b > 0 ) . Một góc vuông uOv ( vuông tại O ) , cắt (E) tại M ; N . CMR : 1/OM^2 + 1/ON^2 ko đổi . Từ đó suy ra MN luôn tiếp xúc với 1 đường tròn cố định
Trong mặt phẳng tọa độ Oxy, cho elip (E) : \(\dfrac{x^2}{4}+y^2=1\) và điểm \(A\left(-1;\dfrac{1}{2}\right)\). Gọi d là đường thẳng đi qua A có hệ số góc là m. Xác định m để d cắt (E) tại hai điểm phân biệt M, N sao cho A là trung điểm của MN ?
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) \(x^2+y^2-2x-4=0\) và đường thẳng (d): \(x-y+1=0\)
1) Viết pt đường thẳng (d1) vuông góc với (d) và tiếp xúc với (C)
2) Viết pt đương thẳng (Δ) song song với (d) và cắt (C) tại 2 điểm M, N có MN = 2
3) Tìm trên (d) điểm P biết rằng qua P kẻ được 2 tiếp tuyến PA, PB đến (C) có ΔPAB là tam giác đều. (trong đó A, B là 2 tiếp điểm)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và hai điểm \(A\left(1;4\right);B\left(1;\dfrac{1}{2}\right)\). Viết phương trình đường thẳng d đi qua B cắt đường tròn (C) tại M, N sao cho tam giác AMN có diện tích lớn nhất
Trong mặt phẳng tọa độ Oxy, cho elip (E) : \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Gọi hai tiêu điểm của (E) là \(F_1,F_2\) và M là điểm thuộc (E) sao cho \(\widehat{F_1MF_2}=60^0\). Tìm tọa độ điểm M và tính diện tích tam giác \(MF_1F_2\) ?
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của nó có phương trình là : \(\left(x-\dfrac{5}{2}\right)^2+y^2=\dfrac{25}{4}\). Tìm tọa độ các đỉnh còn lại của hình chữ nhật ?
Trong mặt phẳng tọa độ Oxy, lập phương trình chính rắc của elip (E) biết (E) có tiêu điểm \(F_1\left(-2;0\right)\) và diện tích hình chữ nhật cơ sở bằng \(12\sqrt{5}\). Viết phương trình đường tròn (C) có tâm là gốc tọa độ và (C) cắt (E) tại bốn điểm tạo thành một hình vuông ?
trong mặt phẳng tọa độ oxy cho đường tròn (c): x^2+y^2=9. viêt phương trình chính tắc của elip có tâm ai bằng 1/3, biết rằng E cắt C tại 4 điểm pbiệt abcd và ab=3bc, ab// ox