Câu 1: Trong mặt phẳng Oxy cho \(M(-1;2),N(3;1)\) và đường thẳng \(d: x-y+1=0\). Tìm điểm P thuộc d sao cho tam giác MNP cân tại N.
Câu 2: Cho \(tanx=-2\).Tính giá trị biểu thức \(A=\frac{sin^2 x +3sin xcos x-cos^2 x +1}{3sin^2 x +4sin x cosx +5cos^2 x -2}\).
Câu 3: Tìm m để hàm số \(y=\sqrt{(m+1)^2-2(m+1)x+4}\) có tập xác định D=R
Câu 4: Cho điểm C(-2;5) và đường thẳng \(\Delta=3x-4y+4=0\). Tìm trên \(\Delta\) hai điểm A,B đối xứng với nhau qua \(I(2;\frac{5}{2})\) và diện tích tam giác ABC bằng 15
4.
Gọi H là chân đường cao kẻ từ C xuống đường thẳng d.
Ta có: \(CH=d\left(C;d\right)=\dfrac{\left|-3.2-4.5+4\right|}{\sqrt{3^2+4^2}}=\dfrac{22}{5}\)
Khi đó: \(S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{1}{2}.\dfrac{22}{5}.AB=15\Rightarrow AB=\dfrac{75}{11}\)
\(\Rightarrow IA=IB=\dfrac{75}{22}\)
Gọi \(A=\left(4m;3m+1\right)\) là điểm cần tìm.
Ta có: \(IA=\dfrac{75}{22}\Leftrightarrow\sqrt{\left(4m-2\right)^2+\left(3m-\dfrac{3}{2}\right)^2}=\dfrac{75}{22}\)
\(\Leftrightarrow\sqrt{25m^2-25m+\dfrac{25}{4}}=\dfrac{75}{22}\)
\(\Leftrightarrow\left|m-\dfrac{1}{2}\right|=\dfrac{15}{22}\)
\(\Leftrightarrow\left[{}\begin{matrix}m-\dfrac{1}{2}=\dfrac{15}{22}\\m-\dfrac{1}{2}=-\dfrac{15}{22}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{13}{11}\\m=-\dfrac{2}{11}\end{matrix}\right.\)
\(m=\dfrac{13}{11}\Rightarrow A=\left(\dfrac{52}{11};\dfrac{50}{11}\right)\Rightarrow B=\left(-\dfrac{8}{11};\dfrac{5}{11}\right)\)
Vậy \(A=\left(\dfrac{52}{11};\dfrac{50}{11}\right);B=\left(-\dfrac{8}{11};\dfrac{5}{11}\right)\)
1.
\(P=\left(m;m+1\right)\) là điểm cần tìm
\(\Rightarrow NP=\sqrt{\left(m-3\right)^2+m^2}=\sqrt{2m^2-6m+9}\)
Ta có: \(NM=NP\)
\(\Leftrightarrow\sqrt{\left(-1-3\right)^2+\left(2-1\right)^2}=\sqrt{2m^2-6m+9}\)
\(\Leftrightarrow m^2-3m-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P=\left(4;5\right)\\P=\left(-1;0\right)\end{matrix}\right.\)
Vậy \(P=\left(4;5\right)\) hoặc \(P=\left(-1;0\right)\)
2.
\(tanx=-2\Leftrightarrow\dfrac{sinx}{cosx}=-2\Leftrightarrow sinx=-2cosx\)
Khi đó:
\(A=\dfrac{sin^2x+3sinx.cosx-cos^2x+1}{3sin^2x+4sinx.cosx+5cos^2x-2}\)
\(=\dfrac{2sin^2x+3sinx.cosx}{2\left(sin^2x-1\right)+sin^2x+5cos^2x+4sinx.cosx}\)
\(=\dfrac{2sin^2x+3sinx.cosx}{sin^2x+3cos^2x+4sinx.cosx}\)
\(=\dfrac{8cos^2x-3.2cos^2x}{4cos^2x+3cos^2x-4.2cos^2x}\)
\(=\dfrac{2cos^2x}{-cos^2x}=-2\)