Câu 1: Giải các phương trình sau:
a) x2−115+x2−313=x2−511+x2−79
<=> x2−115-1+
x2−313+-1=x2−511-1+x2−79++-1
<=> x2−115
x2−115+x2−313-x2−511-\(\frac{x^2-16}{9}\)=0
x2−7<=>(\(x^2-16\))(\(\frac{1}{15}\)+\(\frac{1}{13}\)-\(\frac{1}{11}\)-\(\frac{1}{9}\))=0
<=>\(x^2\)-16=0
<=>\(x^2\)=16
<=>\(x^2\)= \(4^2\)
<=>\(x^2\)= \(4^2\)
<=>\(x\)= 4 hoặc x=-4
Vậy pt có tập nghiệm S=\(\left\{4;-4\right\}\)
b) 1x2+5x+6+1x2+7x+12+1x2+9x+20+1x2+11x+30=2
<=>\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)+\(\frac{1}{\left(x+3\right)\left(x+4\right)}\)+\(\frac{1}{\left(x+4\right)\left(x+5\right)}\)+\(\frac{1}{\left(x+5\right)\left(x+6\right)}\)=2
<=>\(\frac{1}{x+2}\)-\(\frac{1}{x+3}\)+\(\frac{1}{x+3}\)-\(\frac{1}{x+4}\)+\(\frac{1}{x+4}\)-\(\frac{1}{x+5}\)+\(\frac{1}{x+5}\)-\(\frac{1}{x+6}\)=2
<=>\(\frac{1}{x+2}\)-\(\frac{1}{x+6}\)=2
<=>\(\frac{4}{\left(x+2\right)\left(x+6\right)}\)=\(\frac{2x^2+16x+24}{\left(x+2\right)\left(x+6\right)}\)
<=>4=2x\(^2\)+16x+24
<=>2x\(^2\)+16x+20=0
...
<=>2(x\(^2\)+8x+10)=0
<=>x\(^2\)+8x+10=0
<=>x\(^2\)+8x+16=26
<=>(x+4)\(^2\)=26
<=>x+4= \(\sqrt{26}\) hoặc -\(\sqrt{26}\)
<=>x=\(\sqrt{26}\)- 4 hoặc -\(\sqrt{26}\)-4
Vậy pt có tập nghiệm S={\(\sqrt{26}\)- 4 ;-\(\sqrt{26}\)- 4}