sửa đề: \(\left(x^2+cx+2\right)\left(ax+b\right)=2x^3-7x^2+2\)
\(\left(x^2+cx+2\right)\left(ax+b\right)=2x^3-7x^2+2\\ \Leftrightarrow ax^3+bx^2+acx^2+bcx+2ax+2b=2x^3-7x^2+2\)
\(\Leftrightarrow ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=2x^3-7x^2+2\)
từ đó, suy ra :
\(\left\{{}\begin{matrix}a=2\\b+ac=-7\\bc+2a=0\\2b=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b+2c=-7\\bc=-4\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-4\end{matrix}\right.\)