Có: \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\Leftrightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
=> \(\begin{cases}a^2=\frac{324}{25}\\b^2=\frac{576}{25}\end{cases}\)\(\Leftrightarrow\begin{cases}a=\frac{18}{5};a=-\frac{18}{5}\\b=\frac{24}{5};b=-\frac{24}{5}\end{cases}\)
Cặp (x;y) thỏa mãn là: \(\left(\frac{18}{5};\frac{24}{5}\right);\left(-\frac{18}{5};-\frac{24}{5}\right)\)
Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}=\pm\frac{18}{5}\)
+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}=\pm\frac{24}{5}\)
- Nếu \(a=\frac{18}{5},b=\frac{24}{5}\Rightarrow a.b=\frac{18}{5}.\frac{24}{5}=\frac{432}{25}=17,8\)
- Nếu \(a=\frac{-18}{5},b=\frac{-24}{5}\Rightarrow a.b=\frac{-18}{5}.\frac{-24}{5}=\frac{432}{25}=17,8\)
Vậy a.b = 17,8