\(I=\int\limits^1_0\frac{xdx}{\sqrt{3x+1}+\sqrt{2x+1}}=\int\limits^1_0\frac{x\left(\sqrt{3x+1}-\sqrt{2x+1}\right)}{x}dx\)
\(=\int\limits^1_0\left(\left(3x+1\right)^{\frac{1}{2}}-\left(2x+1\right)^{\frac{1}{2}}\right)dx=\left[\frac{2}{9}\left(3x+1\right)^{\frac{3}{2}}-\frac{1}{3}\left(2x+1\right)^{\frac{3}{2}}\right]|^1_0\)
\(=\frac{2}{9}\sqrt{4^3}-\frac{1}{3}\sqrt{3^3}-\frac{2}{9}+\frac{1}{3}=\frac{17-9\sqrt{3}}{9}\)
\(\Rightarrow a+b=17-9=8\)