ta có : 3\(^{n+2}\)-\(2^{2+n}\)+3\(^n\)-2\(^n\)=\(3^n.3^2-2^2.2^n+3^n-2^n\)
=\(3^n\)(\(3^2+1\))-2\(^n\)(2\(^2\)+1)
=\(3^n\).10-\(2^n\).5
=5 (3\(^n\).2-2\(^n\))=5.(2.\(3^n\)-\(2^{n-1}\))
=5.A
ta thấy A là số chẵn mà 5 nhân vs bất kì số chẵn nào cũng có tân cùng = 0 nên \(3^{n+2}-2^{n+2}\)+\(3^n-2^n\)\(⋮10\)(đpcm )
Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\cdot9-2^n\cdot4+3^n-2^n=\left(3^n\cdot9+3^n\right)-\left(2^n\cdot4+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
Vì n>0\(\Rightarrow2^n⋮2\Rightarrow2^n\cdot5⋮2,2^n\cdot5⋮5\)
Mà ƯCLN(2;5)=1
\(\Rightarrow2^n\cdot5⋮2\cdot5=10\)
Lại có:\(3^n\cdot10⋮10\)
\(\Rightarrow3^n\cdot10-2^n\cdot5⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)