Ta có: \(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(A=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(A=4^{n-1}\left(4^4+4^3-4^2-4\right)=4^{n-1}.300\).
Vậy .......... (dpcm)
\(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(=4^{n-1}\left(4^4+4^3-4^2-4\right)\)
\(=4^{n-1}.300⋮300\)
\(\Rightarrow A⋮300\left(đpcm\right)\)
Vậy...