\(P=\left(\dfrac{3\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+3}{1}\\ =\left(\dfrac{3+\sqrt{x}}{\sqrt{x}-2}\right).\dfrac{1}{\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
\(P=\left(\dfrac{3\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+3}{1}\\ =\left(\dfrac{3+\sqrt{x}}{\sqrt{x}-2}\right).\dfrac{1}{\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
Rút gọn biểu thức:
A=\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\) với \(x\ge0,x\ne4,x\ne9\)
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
Cho hai biểu thức:
A = \(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x-\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\) và B = \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\) với \(x\ge0;x\ne4;x\ne9\)
c) Biểu thức P = A.B sau khi thu gọn được P = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\). Tìm các số tự nhiên x để P nhận giá trị nguyên
cho hai biểu thức
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{2-5\sqrt{x}}{4-x}\) (\(x\ge0;x\ne4\))
a, tìm giá trị của A khi x = 25
b, rút gọn biểu thức B
c, tìm số tự nhiên x để \(\dfrac{B}{A}\le\dfrac{1}{3}\)
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\) \(-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) \(-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0,x\ne4,x\ne9\right)\)
a\()\) Rút gọn biểu thức trên
b\()\) Tìm giá trị nguyên của x để M nhận giá trị nguyên
cho biểu thức \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\),(với \(x\ge0,x\ne4\))chứng minh A>1
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}+2}-\dfrac{8+2\sqrt{x}}{x-4}\) với \(x\ge0;x\ne4\)
Biểu thức B sau khi thu gọn được B = \(\dfrac{1}{\sqrt{x}+2}\). Tìm các giá trị của x để \(P=3A+2B\) đạt GTNN
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
Cho biểu thức A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{1}{2}\right)\) (Với x\(\ge0,x\ne9\))
a.Rút gọn A
b.Tìm x để A<\(-\dfrac{1}{2}\)