Đề bài: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|=0\)
PT \(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\dfrac{1}{6};-8\right)\)
Ta có: \(\left|3x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\left|\dfrac{1}{2}y+4\right|\ge0\forall y\)
Do đó: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)