\(a.a\ne0;a\ne\pm3\)
\(b.P=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)
\(=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\left[1-\dfrac{6\left(a-3\right)}{\left(a+3\right)\left(a-3\right)}\right]\)
\(=\dfrac{a+3}{2a}.\left(1-\dfrac{6}{a+3}\right)\)
\(=\dfrac{a+3}{2a}-\dfrac{a+3}{2a}.\dfrac{6}{a+3}\)
\(=\dfrac{a+3}{2a}-\dfrac{6}{2a}\)
\(=\dfrac{a-3}{2a}\)
c. Với: \(P=0\Leftrightarrow\dfrac{a-3}{2a}=0\)
\(\Leftrightarrow a-3=0\)
\(\Leftrightarrow a=3\left(loại\right)\)
Vậy ko có a thỏa mãn để P = 0
Với \(P=1\Leftrightarrow\dfrac{a-3}{2a}=1\)
\(\Leftrightarrow2a=a-3\)
\(\Leftrightarrow a=-3\) (loại)
Vậy ......