Bài 4. Cho ∆ABC, trung tuyến AM = 1 2 BC a) Chứng minh: ∠BMA = 2∠MAC , ∠CMA " = 2∠MAB b) Tính ∠BAC Bài 5. Cho ∆ABC vuông tại A, AB = 6cm, AC = 8cm a) Tính BC b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh ∠CBD = ∠DCB c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh ∆BCE vuông Giải giúp mik với mn :(
Bài 5:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
b) Xét ΔDBI vuông tại I và ΔDCI vuông tại I có
DI chung
BI=CI(I là trung điểm của BC)
Do đó: ΔDBI=ΔDCI(hai cạnh góc vuông)
Suy ra: \(\widehat{DBI}=\widehat{DCI}\)(hai góc tương ứng)
c) Xét ΔECB có
CD là đường trung tuyến ứng với cạnh EB
\(CD=\dfrac{EB}{2}\)
Do đó: ΔECB vuông tại C(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Bài 4:
a) Ta có: \(AM=\dfrac{1}{2}BC\)(gt)
mà \(BM=CM=\dfrac{1}{2}BC\)(gt)
nên AM=BM=CM
Xét ΔABM có MA=MB(cmt)
nên ΔABM cân tại M
Suy ra: \(\widehat{AMB}=180^0-2\widehat{MAB}\)
\(\Leftrightarrow180^0-\widehat{CMA}=180^0-2\widehat{MAB}\)
hay \(\widehat{CMA}=2\cdot\widehat{MAB}\)
Xét ΔACM có MA=MC(cmt)
nên ΔACM cân tại M
Suy ra: \(\widehat{AMC}=180^0-2\cdot\widehat{MAC}\)
\(\Leftrightarrow180^0-\widehat{BMA}=180^0-2\cdot\widehat{MAC}\)
hay \(\widehat{BMA}=2\cdot\widehat{MAC}\)
b) Ta có: \(\widehat{BAC}=\widehat{MAB}+\widehat{MAC}\)
\(=\dfrac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)