1)
a) \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy x=2 hoặc x=-1
b) \(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy x=3 hoặc x=-1
1,
a, x(x-2)+x-2=0
<=> (x-2)(x+1)=0
<=> \(\left\{{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy S= \(\left\{-1;2\right\}\)
b, x(x-3)+x-3=0
<=> (x-3)(x+1)=0
<=> \(\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy S= \(\left\{-1;3\right\}\)
2)
a) \(\left(x^3+3x^2-11x+2\right):\left(x-2\right)\)
Vậy \(\left(x^3+3x^2-11x+2\right):\left(x-2\right)=x^2+5x-1\)
b)\(\left(y^3+3y^2-11y+2\right):\left(y-2\right)\)
Vậy \(\left(y^3+3y^2-11y+2\right):\left(y-2\right)=y^2+5y-1\)