\(\dfrac{3x-1}{5}\ge\dfrac{x}{2}+0,8\left(1\right)\\ 1-\dfrac{2x-5}{6}>\dfrac{3-x}{4}\left(2\right)\)
+) Giải \(\left(1\right):\dfrac{3x-1}{5}\ge\dfrac{x}{2}+0,8\)
\(\Leftrightarrow2\left(3x-1\right)\ge5x+8\\ \Leftrightarrow6x-2\ge5x+8\\ \Leftrightarrow6x-5x\ge8+2\\ \Leftrightarrow x\ge10\)
+) Giải \(\left(2\right):\) \(1-\dfrac{2x-5}{6}>\dfrac{3-x}{4}\)
\(\Leftrightarrow12-2\left(2x-5\right)>3\left(3-x\right)\\ \Leftrightarrow12-4x+10>9-3x\\ \Leftrightarrow-4x+3x>9-22\\ \Leftrightarrow-x>-11\\ \Leftrightarrow x< 11\)
Vậy \(10\le x< 11\) thỏa mãn cả 2 bất phương trình
Đúng 0
Bình luận (0)