Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
erwer rrer

Bài 1 : Phần tích đa thức thành nhân tử : n^3 + 3n^2 + 2n. áp dụng Chứng minh rằng : A = n/3 + n^2/2 + n^3/6. là số nguyên với mọi n

Nguyễn Xuân Tiến 24
12 tháng 10 2017 lúc 9:16

\(n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)=n\left(n+1\right)\left(n+2\right)\) (1)

\(A=\dfrac{n}{3}+\dfrac{n^2}{2}+\dfrac{n^3}{6}=\dfrac{2n}{6}+\dfrac{3n^2}{6}+\dfrac{n^3}{6}\)

Từ (1) \(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)

- mà trong ba số nguyên liên tiếp thì tích của chúng chia hết cho 2 và 3

- mặt khác: (2,3) = 6

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

tức là \(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên (đpcm)