A = n3-3n2-n+3 = n2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
Vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A \(⋮\) 16(1)
mặt khác:
A = n3-3n2-n+3 = n3 - n - 3(n2 - 1) = n(n+1)(n-1) - 3(n2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) 3 => A \(⋮\) 3
n = 3k + 1 => (n -1) \(⋮\) 3 => A \(⋮\) 3
n = 3k + 2 => (n+1) = 3k + 3 \(⋮\) 3
=> A \(⋮\) 3 (2)
Từ (1) và (2) => A \(⋮\) 3.16 = 48 (3; 16 là 2 số nguyên tố cùng nhau).
Ta có:
\(n^3-3n^2-n+3\)
\(=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)
Thay \(n=2k+1\), ta có:
\(\left(2k+1+1\right)\left(2k\right)\left(2k-2\right)\)
\(=2k.2.2.k.\left(k+1\right)\left(k-1\right)\)
\(=8\left(k-1\right)k.\left(k+1\right)\)
Ta thấy k, k-1 ; k+1 là 3 số tự nhiên liên tiếp, mà 3 số tự nhiên liên tiếp thì chia hết cho 6.
=> \(n^3-3n^2-2+3⋮48\) với mọi số n lẻ.
Vậy ...