a) \(\left(2x-\dfrac{1}{4}xy\right)\left(2-3x+5x^2\right)=4x-6x^2+10x^3-\dfrac{1}{2}xy+\dfrac{3}{4}xy-\dfrac{5}{4}x^3y\)
b) \(\left(3x^3-5x+6x^2-1\right)\left(8-x\right)=24x^3-40x+48x^2-8-3x^4+5x^2-6x^3+x=18x^3+53x^2-3x^4-39x-8\)c) \(\left(5xy^2-2xy\right)\left(\dfrac{1}{6}x-8xy+\dfrac{5}{7}x^2\right)=\dfrac{5}{6}x^2y^2-40x^2y^3+\dfrac{25}{7}x^3y^2-\dfrac{1}{3}x^2y+16x^2y^2-\dfrac{10}{7}x^3y=\dfrac{101}{6}x^2y^2+40x^2y^3+\dfrac{25}{7}x^3y^2-\dfrac{1}{3}x^2y\)