Bài 2:
a: Xét ΔABC có \(AC^2=BA^2+BC^2\)
nên ΔBAC vuông tại B
b: \(\sin A=\cos C=\dfrac{BC}{AC}=\dfrac{12}{13}\)
cos A=sin C=5/13
tan A=cot C=12/5
cot A=tan C=5/12
Bài 2:
a: Xét ΔABC có \(AC^2=BA^2+BC^2\)
nên ΔBAC vuông tại B
b: \(\sin A=\cos C=\dfrac{BC}{AC}=\dfrac{12}{13}\)
cos A=sin C=5/13
tan A=cot C=12/5
cot A=tan C=5/12
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C
cho tam giác abc vuông tại A . tính tỉ số lượng giác của góc c trong các trường hợp sau a/ AC=8cm bc=17cm b/ ab=12cm Ac=12cm c/ AB=a BC=a√5
cho tam giác abc vuông tại b. tìm các tỉ số lượng giác của góc c sau đó tính góc b,c khi: a,bc=5cm,ab=12cm b,bc=10cm,ac=3cm c,ac=5cm,ab:3cm.
Bài 1: Cho tam giác ABC vuông tại A có AB = 10 cm, AC = 16 cm. Tìm các tỉ số lượng giác của góc B và góc C.
Cho tam giác ABC vuông tại B có AB=3cm, BC=4cm. a) Tính các tỉ số lượng giác góc A. Từ đó suy ra các tỉ số lượng giác góc C. b) Tính góc A.
Câu 1 : Cho DABC vuông tại A, có AB = 5cm, AC = 12cm. Tính các tỉ số lượng giác của góc B.
Câu 2 : Cho các tỉ số lượng giác sau: sin250, cos350, sin190, sin470, cos620. a/ Hãy viết các tỉ số lượng giác cosin thành các tỉ số lượng giác sin. b/ Sắp xếp các tỉ số lượng giác đã cho theo thứ tự tăng dần (có giải thích).
Câu 3 : Giải tam giác DEF vuông tại D, biết rằng DE = 5cm, DF = 9cm.Tính EF, góc E, góc F.
Câu 4 : Cho DABC vuông tại A, đường cao AH. Biết rằng BH = 64cm, HC = 225cm a/ Tính độ dài các cạnh AB, AC, AH. b/ Tính các góc nhọn B và C.
Cho tam giác ABC vuông tại A. tìm các tỉ số lượng giác của góc B khi:
a,BC=5cm,AB=3cm
b,BC=13cm,AC=12cm
c,AC=4cm,AB:3cm
cho tam giác ABC vuông tại A có cạnh AB=a , cạnh BC=2a.Tính tỉ số lượng giác của góc B và góc C
cho 1 tam giác ABC vuông tại C, trong đó AC = 0,9m; BC = 1,2m. tính các tỉ số lượng giác của góc B, từ đó suy ra các tỉ số lượng giác góc A