Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thị Hồi

Bài 1 : Cho tam giác ABC nhọn, ba đường cao AD, BE, CF cắt nhau tại H. Gọi I, K lần lượt là hình chiếu của điểm D trên cạnh AB, AC. Gọi O là giao điểm của EF và AD.

Chứng minh rằng:

a) AE.AC = AF.AB và AI.AB = AK. AC

b) Chứng minh: AD.CosBAC = AH.SinABC. SinACB

Bài 2 :

Cho a,b,c thực dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\)

CMR ; \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)

Hoàng Thị Ánh Phương
7 tháng 3 2020 lúc 9:39

Bài 1 :

Hỏi đáp Toán

a ) + Ta có \(\Delta ABE\) vuông tại E và \(\Delta ACF\) vuông tại F ( vì BE và CF là hai đường cao của\(\Delta\)ABC )

\(\Rightarrow cosBAC=\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)
+ ) Ta có : \(\Delta ADC\) vuông tại D có DK là đường cao

\(\Rightarrow AD^2=AK.AC\)

Lại có : \(\Delta ADB\) vuông tại D có DI là đường cao

\(\Rightarrow AD^2=AI.AB\)

Suy ra : \(AI.AB=AK.AC\)

b ) Ta có : \(\Delta ADB\) vuông tại D \(\Rightarrow\sin ABC=\frac{AD}{AB}\)

Lại co : \(\Delta CBE\) vuông tại E và \(\Delta AHE\) vuông tại E

\(\widehat{AHE}=\widehat{C}\) ( cùng bù ^DHE ) \(\Rightarrow\sin ABC=\frac{BE}{BC}=\frac{AE}{AH}\)

\(\Rightarrow\frac{\cos BAC}{\sin ABC.\sin ACB}=\frac{AE}{AB}:\left(\frac{AD}{AB}.\frac{AE}{AH}\right)=\frac{AE}{AB}.\frac{AB.AH}{AD.AE}=\frac{AH}{AD}\)

Vậy \(AD.cosBAC=AH.\sin ABC.\sin ACB\left(đpcm\right)\)

Khách vãng lai đã xóa
Lê Thị Thục Hiền
7 tháng 3 2020 lúc 13:12

\(\frac{1}{\sqrt{5a^2+2ab+2b^2}}=\frac{1}{\sqrt{4\left(a+\frac{b}{2}\right)^2+\left(a-b\right)^2}}\le\frac{1}{\sqrt{4\left(a+\frac{b}{2}\right)^2}}=\frac{1}{2\left(a+\frac{b}{2}\right)}=\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

CM tương tự => \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\)

\(\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng vế với vế => \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2c^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{3}{2}\)

Khách vãng lai đã xóa