Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm hải  đăng

1 . Cho a,b,c thực dương t.m: a+b+c=2

CMR: \(P=\frac{ab}{\sqrt{\left(ab+2c\right)}}+\frac{bc}{\sqrt{\left(bc+2a\right)}}+\frac{ca}{\sqrt{\left(ca+2b\right)}}\le1\)

2 . Cho tam giác ABC nhọn có góc BAC> góc ACB. Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại M,N,E. Gọi K là giao điểm của BO và NE. Chứng minh

a ) \(\widehat{AOB}=90^0+\frac{\widehat{ACB}}{2}\)

b )

b) 5 điểm A, M, K, O, E cùng thuộc một đường tròn

c Gọi T là giao điểm BO với AC. Chứng minh: KT.BN = KB.ET

Hoàng Thị Ánh Phương
8 tháng 3 2020 lúc 9:10

Bài 1 :

Ta có : \(a+b+c=2\) nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm :

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\) ( vì a , b , c thực dương )

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\left(cmt\right)\)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\) ( nhân 2 vế cho ab thực dương ) (1)

( Dấu " = " \(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\) )

Tương tự ta cũng có :

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)

( Dấu " = \(\Leftrightarrow a=c\) ) (3)

Cộng các BĐT (1) ; (2) ; (3) ta được :

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\le1\)

Dấu " = " \(\Leftrightarrow a=b=c=\frac{2}{3}\)

Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
8 tháng 3 2020 lúc 9:26

Bài 2 :

Hỏi đáp Toán

a ) Ta có :

\(\widehat{AOB}=180^0-\widehat{OAB}=180^0-\widehat{\frac{BAC}{2}}-\widehat{\frac{ABC}{2}}=90^0+\frac{\left(180^0-\widehat{BAC}-\widehat{ABC}\right)}{2}=90^0+\widehat{\frac{ACB}{2}}\)

b ) Dễ thấy A , M , O , E cùng thuộc đường tròn đường kính OA ( vì \(\widehat{AMO}=\widehat{AEO}=90^0\) ) (1)
Ta có : \(\widehat{AOK}=180^0-\widehat{AOB}=180^0-\left(90^0+\frac{\widehat{ABC}}{2}\right)=90^0-\frac{\widehat{ACB}}{2}=\widehat{CEN}\) ( do \(\Delta CEN\) cân tại C )
=> Tứ giác AOKE nội tiếp hay A , O , K , E cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra 5 điểm A, M, K, O, E cùng thuộc một đường tròn ( đpcm )

Hỏi đáp Toán

Khách vãng lai đã xóa

Các câu hỏi tương tự
Văn Thắng Hồ
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Lê Trường Lân
Xem chi tiết
Aiken
Xem chi tiết
Nguyễn Minh Trâm
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Music Hana
Xem chi tiết