Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Chii

Bài 1 : Cho hình chữ nhật ABCD có AB = 8cm , BC = 6cm . Qua D kẻ đường thẳng m vuông góc DB , đường thẳng m cắt tia BC tại E . Kẻ CH vuông góc DE tại H 

a, Chứng minh △BDE đồng dạng △DCE

b, Chứng minh DC2 = CH . DB 

c, Gọi giao điểm hai đường chéo của hình chữ nhật ABCD là O . Hai đường OE và HC cắt nhau tại I . Chứng minh I là trung điểm HC và S△BCH / S△EBD . 

d, Chứng minh 3 đường thẳng OE , DC , BH đồng quy . 

 

CÁC BẠN GIÚP MÌNH VỚI Ạ =((((((((((((((((((((

 

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 20:49

a) Xét ΔBDE vuông tại D và ΔDCE vuông tại C có 

\(\widehat{DEC}\) chung

Do đó: ΔBDE\(\sim\)ΔDCE(g-g)

b) Xét ΔBCD vuông tại C và ΔDHC vuông tại H có

\(\widehat{BDC}=\widehat{DCH}\)(hai góc so le trong, BD//CH)

Do đó: ΔBCD\(\sim\)ΔDHC(g-g)

Suy ra: \(\dfrac{DC}{CH}=\dfrac{BD}{CD}\)

hay \(CD^2=CH\cdot BD\)


Các câu hỏi tương tự
Trần Công Tiến
Xem chi tiết
Phan Thiên
Xem chi tiết
Phan Thiên
Xem chi tiết
Bảo
Xem chi tiết
Bảo
Xem chi tiết
Ctuu
Xem chi tiết
Tran Thuy Linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Kiên Đặng
Xem chi tiết