bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH TỐI MAI ĐI HC RỒI
bài 1: a) \(A=\frac{\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)}{\frac{a+2}{a-2}}\)
\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{a+2}{a-2}\)
\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\frac{a-2}{a+2}\)
\(A=2\cdot\frac{a-2}{a+2}\left(a\ne0;a\ne\pm2\right)\)
b) để A = 1 => \(2\cdot\frac{a-2}{a+2}=1\)
=> 2a - 4 = a + 2
=> a = 6 (thỏa mãn)
bài 2) a) ĐKXĐ: \(x\ne4\)
b) \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(\Leftrightarrow B=\frac{2\sqrt{x}+\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow B=\frac{2\sqrt{x}+4}{x-4}=\frac{2}{\sqrt{x}-2}\)
c) \(B=\frac{2}{\sqrt{3+2\sqrt{3}}-2}\) \(\approx3,69\)
(bạn tự bấm máy tính nhé nhưng theo mình thấy nếu x = 4 + 2\(\sqrt{3}\) hay \(3+2\sqrt{2}\) thì sẽ cho kết quả đẹp hơn, k biết bạn có nhầm đề k nữa!)
bài 3)
a, \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right)\cdot\frac{\sqrt{y}+1}{\sqrt{y}+2}\left(y\ne1;y\ne4\right)\)
\(\Leftrightarrow B=\frac{\sqrt{y}-1-3y-3\sqrt{y}+3y-3}{y-1}\cdot\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
\(\Rightarrow B=\frac{-2\sqrt{y}-4}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\cdot\frac{\sqrt{y}+1}{\sqrt{y}+2}\Rightarrow B=\frac{-2}{\sqrt{y}-1}\)
b) y = \(3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)
=> B = \(\frac{-2}{\sqrt{\left(1+\sqrt{2}\right)^2}-1}\)
\(\Rightarrow B=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)