Ôn tập chương IV

Phạm Lợi

Bài 1: Cho a,b dương sao cho a+b=1. Chứng minh rằng: \(\frac{a^2}{a+2b}+\frac{b^2}{a+2b}\ge\frac{1}{3}\)

bài 2: Cho x,y là các số thực dương thỏa mãn x+y=2019. tìm giá trị nhỏ nhất của biểu thức P= \(\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}\)

bài 3: Cho x>0, y>0 là những số thay đổi thỏa mãn \(\frac{2018}{x}+\frac{2019}{y}=1\). tìm giá trị nhỏ nhất của biểu thức P= x+y

Akai Haruma
11 tháng 3 2019 lúc 17:35

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

Bình luận (0)
Akai Haruma
11 tháng 3 2019 lúc 17:41

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

Bình luận (0)
Akai Haruma
11 tháng 3 2019 lúc 17:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

\(1=\frac{2018}{x}+\frac{2019}{y}=\frac{(\sqrt{2018})^2}{x}+\frac{(\sqrt{2019})^2}{y}\geq \frac{(\sqrt{2018}+\sqrt{2019})^2}{x+y}\)

\(\Rightarrow P=x+y\geq (\sqrt{2018}+\sqrt{2019})^2\)

Vậy \(P_{\min}=(\sqrt{2018}+\sqrt{2019})^2\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{2018}}{x}=\frac{\sqrt{2019}}{y}\\ \frac{2018}{x}+\frac{2018}{y}=1\end{matrix}\right.\Leftrightarrow x=\frac{\sqrt{2018}}{\sqrt{2018}+\sqrt{2019}}; y=\frac{\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}}\)

---------------------

Tóm lại, những bài này bạn sử dụng 2 công cụ chính:

BĐT AM-GM (quá quen thuộc)

BĐT Cauchy-Schwarz: \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+...+\frac{a_n^2}{b_n}\ge \frac{(a_1+a_2+...+a_n)^2}{b_1+b_2+...+b_n}\)

Bình luận (0)

Các câu hỏi tương tự
Jack Viet
Xem chi tiết
CAO Thị Thùy Linh
Xem chi tiết
dung doan
Xem chi tiết
Ngan Tran
Xem chi tiết
Phạm Lợi
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Trần Anh Duy
Xem chi tiết
Emilia Nguyen
Xem chi tiết
Quy Le Ngoc
Xem chi tiết