Bài 3:
\(a+b+c=0\)
nên a+b=-c
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=0\cdot\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Do đó: \(a^3+b^3+c^3=3abc\)(ĐPCM)