1.cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). chứng minh
a)\(\frac{a+b}{b}=\frac{c+d}{d}\) b)\(\frac{a-b}{b}\)=\(\frac{c-d}{d}\)
c)\(\frac{a+c}{c}=\frac{b+d}{d}\) d)\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
cho a,b,c,d >0 A=\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Tìm phần nguyên của A
Cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\) (a, b, c, d > 0). Tính:
A=\(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)
Bài 1: Cho \(\frac{a}{b}=\frac{c}{d}\) .CM:
a) \(\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\) b) \(\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)
Bài 2: Cho 3 số a,b,c\(\ne\)0, sao cho a\(^2\)=bc. CM:
a) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\) b)\(\left(\frac{c+2019a}{a+2019b}\right)^2=\frac{c}{b}\)
Bài 4: Cho a,b,c,d khác 0 sao cho b2=ac, c2=bd.CM: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right),a\ne\pm b,c\ne\pm d\)
cm \(\frac{a+b}{a-d}=\frac{c+d}{c-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).chứng minh
\(\frac{a-b}{c-d}=\frac{a+c}{b+d}\)
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\). CMR
a) \(\frac{a^2-b^2}{ab}\)=\(\frac{c^2-d^2}{cd}\)
b)\(\frac{\left(a+b\right)^2}{a^2+b^2}\)=\(\frac{\left(c+d\right)^2}{c^2+d^2}\)
c) \(\frac{a}{a+b}\)=\(\frac{c}{c+d}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\) Và b+c+d khác 0. Chứng minh rằng \(\frac{a}{d}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)