từ \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Suy ra a+b+c=0 hoặc a=b=c thay vào
từ \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Suy ra a+b+c=0 hoặc a=b=c thay vào
\(a^3+b^3+c^3=3abc\)
Chứng minh rằng \(\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right)\)=9
Kính mời các tiến sĩ giáo sư nhai hộ câu này==''
Gửi từ chiều r ==Ribi Nkok NgokMysterious PersonAkai HarumaNguyễn Đình Dũng Nguyễn Thanh HằngAce LegonaToshiro KiyoshiHung nguyenNatsu Dragneel 2005Nguyễn Huy Tú
\(Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)\)
Hung nguyen
chứng minh rằng
a) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\cdot\left(a^2+b^2+c^2+ab+bc-ca\right)\)
áp dụng suy ra kết quả
a) \(a^3+b^3+c^3=3abc\) thì \(\left\{{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
b) cho \(a^3+b^3+c^3=3abc\left(a+c\ne0\right)\)
tính B= \(\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
Cho abc khác 0, \(a^3+b^3+c^3=3abc\) . Tính A= \(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
Cho a\(^3\)\(+b^3+c^3=3abc\). Tính giá trị biểu thức:
A\(=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho a, b, c là các số dương thỏa mãn: a3 + b3 + c3 = 3abc. Tính giá trị biểu thức:
P = \(\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)\)
Cho \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\).Tính P =\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh rằng: \(\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)
\(\dfrac{x}{\left(a-b\right).\left(a-c\right)}+\dfrac{x}{\left(b-a\right).\left(b-c\right)}+\dfrac{x}{\left(c-a\right).\left(c-b\right)}\)=2