\(A=2cos^22x-1+4cos2x-8\left(\frac{cos2x+1}{2}\right)^2\)
\(=2cos^22x-1+4cos2x-2\left(cos^22x+2cos2x+1\right)\)
\(=2cos^22x-1+4cos2x-2cos^22x-4cos2x-2\)
\(=-3\)
\(A=2cos^22x-1+4cos2x-8\left(\frac{cos2x+1}{2}\right)^2\)
\(=2cos^22x-1+4cos2x-2\left(cos^22x+2cos2x+1\right)\)
\(=2cos^22x-1+4cos2x-2cos^22x-4cos2x-2\)
\(=-3\)
Câu 1 : Chứng minh rằng : 3 - 4sin2x = 4cos2x - 1Câu 2 : Chứng minh rằng : cos4x - sin4x = 2cos2x - 1 = 1 - 2sin2xCâu 3 : Chứng minh rằng : sin4x + cos4x = 1 - 2sin2xCos2x
chứng minh các đẳng thức sau
a) \(\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\frac{1}{4}\cos3x\)
b) \(\sin5x-2\sin x\left(\cos4x+\cos2x\right)=\sin x\)
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
cos4x=8\(^{cos^4x-8cos^2x+1}\)
Chứng minh biểu thức sau không phụ thuộc vào x: A= sin6x+2sin2xcos4x+3sin4cos2x+cos4x
Chứng minh:
\(\sin5x-2\sin x\times\left(\cos4x+\cos2x\right)=\sin x\)
CMR :
a) \(\frac{sinx+sin3x+sin4x}{1+cosx+cos3x+cos4x}=tan2x\)
b) \(\frac{sin^22x+2cos\left(3\pi+2x\right)-2}{-3+4cos2x+cos\left(4x-\pi\right)}=\frac{1}{2}cot^4x\)
9. Rút gọn các biểu thức sau
A= cos7x - cos8x - cos9x + cos10x / sin7x - sin8x - sin9x + sin10x
B = sin2x + 2sin3x + sin4x / sin3x +2sin4x + sin5x
C= 1+cosx + cos2x + cos3x / cosx + 2cos^2 . x -1
D = sin4x + sin5x + sin6x / cos4x + cos5x + cos6x
chứng minh biểu thức A không phụ thuộc và x
A= Cos6xCos2x+Sin2xCos6x+\(\frac{1}{8}Cos^42x\)
giúp em với ạ bí quá !! mình cần gấp