Lời giải:
Đặt \(2^{\sqrt{x}}=a(a\geq 1)\)
Ta có: \(8^{\sqrt{x}}-3.4^{\sqrt{x}}+2^{\sqrt{x}}=0\)
\(\Leftrightarrow (2^{\sqrt{x}})^3-3(2^{\sqrt{x}})^2+2^{\sqrt{x}}=0\)
\(\Leftrightarrow a^3-3a^2+a=0\)
\(\Leftrightarrow a(a^2-3a+1)=0\)
\(\Rightarrow a=\frac{3+\sqrt{5}}{2}\) do $a\geq 1$
Khi đó: \(\sqrt{x}=\log_2(\frac{3+\sqrt{5}}{2})\Rightarrow x=\left(\log_2(\frac{3+\sqrt{5}}{2})\right)^2\)