XÉT tam giác HBA và tam giác ABC có:
góc AHB= góc CAB=90
góc HBA= góc ABC(góc B chung)
vậy tgiac HBA đồng dạng với tgiac ABC(g.g)
b.Vì tgiac ABC vuông tại A nên áp dụng định lý pytago vào tgiac vuông ABC ta có:
\(AB^2\)+\(AC^2\)=\(BC^2\)
XÉT tam giác HBA và tam giác ABC có:
góc AHB= góc CAB=90
góc HBA= góc ABC(góc B chung)
vậy tgiac HBA đồng dạng với tgiac ABC(g.g)
b.Vì tgiac ABC vuông tại A nên áp dụng định lý pytago vào tgiac vuông ABC ta có:
\(AB^2\)+\(AC^2\)=\(BC^2\)
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Cho tam giác ABC vuông ở A, có AB=6cm, AC=8cm. vẽ đường cao AH
a, tính BC
b, chứng minh ΔABC đồng dạng với ΔAHB
c, chứng minh AB2= HB.BC
d, vẽ phân giác AD của góc A( D ϵ BC). tính DB
cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.Vẽ đường cao AH và phân giác AD của goác A (D thuộc BC)
a, Tính BC
b,Chứng minh AB^2=BH*BC
c, Tính BH,BD
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH
a, tính BC
b, chứng minh ΔABC đồng dạng với ΔAHB
c, chứng minh AB2=BH.BC. Tính BH, HC
d, vẽ phân giác AD của góc A(D ϵ BC) tính DB
mn giúp vs ạ =)))
1 Cho tam giác ABC . Bx và Cy là các đường thẳng chứa các tia phân giác của các góc ngoài tại B và C . Vẽ AD và AE lần lượt vuông góc với Bx và Cy . Chứng minh rằng : DE song song với BC
2 Cho tam giác ABC . Gọi M , N là trung điểm của AB và BC . Vẽ ME vuông góc với AC , NF vuông góc với AC . Chưng minh rằng :
a) ME song song và bằng NF
b) MN song song và bằng EF
Cho tam giác ABC từ một điểm E trên cạnh AC vẽ đường song song với BC cắt AB tại F và đường thẳng song song với AB cắt BC tại D. Giả sử AE=BF
a, Chứng minh tam giác AED cân
b, Chứng minh AD là phân giác góc A
Tam giác ABC ( AB = AC ) . Trên 2 cạnh AB, AC và về phía ngoài tam giác , vẽ các tam giác đều ADB, AEC.
a) Chứng minh BE = CD
b) Kẻ phân giác AH của tam giác cân. CHứng minh BE, CD, AH đồng quy
cho tam giác ABC vuông tại A, điểm M là trung điểm của BC. Qua M vẽ MH vuông góc với AB và MK vuông góc với AC
a/ chứng minh tứ giác AHKM là hình chữ nhật
b/ xác định vị trí M trên cạnh BC để hcn AHMK là HVuông
c/ chứng minh rằng: SABC=2.SAHMK