a) + Tứ giác AHMK có 3 góc vuông
=> Tứ giác AHMK là hình chữ nhật
b) + Tứ giác AHMK là hình vuông
<=> AM là tia phân giác của góc A
Do đó hcn AHMK là hv <=> M thuộc tia phân giác của góc A
a) + Tứ giác AHMK có 3 góc vuông
=> Tứ giác AHMK là hình chữ nhật
b) + Tứ giác AHMK là hình vuông
<=> AM là tia phân giác của góc A
Do đó hcn AHMK là hv <=> M thuộc tia phân giác của góc A
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Cho tam giác ABC vuông tại A, m là một điểm thuộc cạnh BC. Qua M vẽ các đường thẳng song song với AB và AC, chúng cắt các cạnh AB và AC theo thứ tự tại E và F
a, Tứ giác AFME là hình gì?Vì sao?
b, Xác định vị trí của M trên cạnh BC để tứ giác AFME là hình vuông
Cho tam giác ABC vuông tại A, m là một điểm thuộc cạnh BC. Qua M vẽ các đường thẳng song song với AB và AC, chúng cắt các cạnh AB và AC theo thứ tự tại E và F
a, Tứ giác AFME là hình gì?Vì sao?
b, Xác định vị trí của M trên cạnh BC để tứ giác AFME là hình vuông
Cho tam giác ABC vuông tại A có M là trung điểm BC, có hai đường thẳng qua M vuông góc với nhau cắt cạnh AB và cạnh AC tại D,E. Xác định vị trí của D,E trên cạnh AB,AC để diện tích tam giác MDE lớn nhất
cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a, xác định dạng của tứ giác AEMF, AMBH, AMCK
b, chứng minh rằng H đối xứng với K qua A
c, tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC
a, xác định dạng của tứ giác AEMF, AMBH, AMCK
b, chứng minh rằng H đối xứng với K qua A
c, tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông
Cho tam giác ABC vuông tại A ( AB<AC), trung tuyến AM, , đường cao AH . trên tia đối của MA lấy điểm D sao cho MD=MA
a, tứ giác ABCD là hình gì ? Vì sao
b, Gọi I là điểm đối xứng của A qua B chứng minh BC song song VỚI ID
c, chứng minh tứ giác BIDC là hình thang cân
d, vẽ HE vuông góc với AB tại E và HF vuông góc với AH . Chưng minh AM vuông góc với EF
giúp mk với mk đang cần gấp
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH