\(5a\sqrt{64ab^3}-\sqrt{3}\cdot\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\\ =5a\cdot8b\sqrt{ab}-\sqrt{3\cdot12a^3b^3}+2ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\\ =40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\\ =-5ab\sqrt{ab}\)
\(5a\sqrt{64ab^3}-\sqrt{3}\cdot\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\\ =5a\cdot8b\sqrt{ab}-\sqrt{3\cdot12a^3b^3}+2ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\\ =40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\\ =-5ab\sqrt{ab}\)
Cho a<0, b<0. Rút gọn biểu thức K= \(9\sqrt{ab}-6b\sqrt{\dfrac{a}{b}}+\dfrac{1}{b}\sqrt{9ab^3}\)
1.)\(\sqrt{11+4\sqrt{6}}\)
2.)\(\sqrt{7-4\sqrt{3}}-\sqrt{8+2\sqrt{15}}\)
3.)\(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4.)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
5.)\(\sqrt{4a^2-12a+9}vớia\ge\dfrac{3}{2}\)
6.)\(\sqrt{a^2-6a+9}+\sqrt{9+64a^2-48a}với\dfrac{3}{8}< a< 3\)
So sánh:
a, 5+\(\sqrt{ }\)2 và 4+ \(\sqrt{ }\)3
b, \(\)\(\sqrt{ }\)8 - \(\sqrt{ }\)2 và \(\sqrt{ }\)5 - \(\sqrt{ }\)3
c, \(\sqrt{ }\)5 - \(\sqrt{ }\)3 và \(\sqrt{ }\)10 - \(\sqrt{ }\)7
So sánh ( Không sử dụng máy tính)
a) \(\sqrt{2}+\sqrt{3}\) và 3
b) 5 - và\(3\sqrt{2}-2\)
c) 3+ và \(2\sqrt{2}+6\)
Rút gọn và tính giá trị các biểu thức :
a, \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\left(x>0\right)T\text{ại}:x=1\)
\(b,\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) ( a > b > 2 ) tại a = 4 ; b = 3
c, \(ab^2.\sqrt{\dfrac{4}{a^2.b^4}}+ab\left(a;b\ne0;a>0\right)\) Tại a = 1 ; b = - 2
d,\(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\left(a;b>0\right)\) Tại a = 1 ; b = 2
1. làm tính nhân :
a)\(\left(\sqrt{12}-3\sqrt{75}\right).\sqrt{3}\)
b) \(\left(\sqrt{18}-4\sqrt{72}\right).2\sqrt{2}\)
c) \(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)
d) \(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)
2) thực hien phep tinh :
a) \(\left(\sqrt{48}-\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
b) \(\left(\sqrt{20}-3\sqrt{45}+6\sqrt{180}\right):\sqrt{5}\)
c) \(\left(2\sqrt{20}-3\sqrt{45}+4\sqrt{80}\right):\sqrt{5}\)
d) \(\left(3\sqrt{24}+4\sqrt{54}-5\sqrt{96}\right):\sqrt{6}\)
e)\(\left(\sqrt{x^2y}-\sqrt{xy^2}\right):\sqrt{xy}\)
f) \(\left(\sqrt{a^3b}+\sqrt{ab^3}-ab\right):\sqrt{ab}\)
g) \(\left(3\sqrt{x^2y}-4\sqrt{xy^2}+5xy\right):\sqrt{xy}\)
h) \(\left(\sqrt{a^3b}+\sqrt{ab^3-3\sqrt{ab}}\right):\sqrt{ab}\)
Rút gọn:
a)\(\sqrt{\left(\sqrt{7-2}\right)^2}\)
b)\(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-3\sqrt{2}\right)^2}\)
c)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{2+\sqrt{3}}+\sqrt{2a-3}\)
e)\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
f)\(\sqrt{9a^{ }2}+3a-7\left(v\text{ơ}\text{í}a< 0\right)\)
g) \(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}+3x+2\)(vơí x>\(\dfrac{1}{2}\))
h)\(\sqrt{\left(5a-1\right)^2}+2a-3\)
i)\(\sqrt{\dfrac{2a}{5}}.\sqrt{\dfrac{5a}{18}+}2\left(a-1\right)\)(vơí a>=0)
cho a, b, c \(\ge\) 0, a+b+c=3. tìm Max
K=\(\sqrt{12a+\left(b-c\right)^2}+\sqrt{12b+\left(c-a\right)^2}+\sqrt{12c+\left(a-b\right)^2}\)
Cho a,b,c > 0 và 15(\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\))=3+\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\).
Tìm max P=\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\)+\(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\)+\(\dfrac{1}{\sqrt{5c^2+2ca+2a^2}}\)