ĐK: \(x\ge0\)
\(\dfrac{4x-1}{4x+4\sqrt{x}+1}=\dfrac{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(2\sqrt{x}+1\right)^2}=\dfrac{2\sqrt{x}-1}{2\sqrt{x}+1}\)
ĐK: \(x\ge0\)
\(\dfrac{4x-1}{4x+4\sqrt{x}+1}=\dfrac{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(2\sqrt{x}+1\right)^2}=\dfrac{2\sqrt{x}-1}{2\sqrt{x}+1}\)
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
Gidipt 1) sqrt(x ^ 2 - x) = sqrt(3 - x)
2) sqrt(x ^ 2 - 4x + 3) = x - 2
3) sqrt(4 * (1 - x) ^ 2) - 6 = 0
4) sqrt(x ^ 2 - 4x + 4) = sqrt(4x ^ 2 - 12x + 9)
5) sqrt(x ^ 2 - 4) + sqrt(x ^ 2 + 4x + 4) = 0
6) 1sqrt(x + 2sqrt(x - 1)) + sqrt(x - 2sqrt(x - 1)) = 2
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
1. Giải các phương trình sau
căn x^2-2x+1 + căn x^2-4x+4 = 3
2. Tìm giá trị nhỏ nhất của các biểu thức sau
a, P= (căn 4x^2-4x+1) + (căn 4x^2-12x+9)
b, Q= (căn 49x^2-42x+9) + (căn 49x^2+42x+9)
a) 1/2 * sqrt(x - 1) - sqrt(4x - 4) + 3 = 0 c) sqrt(7 - x + 1) = x b) sqrt(x ^ 2 - 4x + 4) + x - 2 = 0
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
Tìm điều kiện xác định:
1/ \(3\sqrt{1-2x}-\)\(\sqrt{3-4x}\)
2/ \(\sqrt{1+x}\)\(-2\sqrt{-4x}\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
A| 4x^2 -4√3x+3=0; B | √( x + 3)^4 =4; √4x^2 =2x +1
giải các phương trình
a/\(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b/\(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c/\(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d/\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)