1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
A = (2cosx - 1)(2cos2x + 2sinx +3) +sin2x - 3
Chứng minh
a) \(\frac{sin^22x+4sin^2x-4}{1-8sin^2x-cos4x}=\frac{1}{2}cot^4x\)
b) \(\frac{cos2x}{cot^2x-tan^2x}=\frac{1}{4}sin^22x\)
CHỨNG MINH ĐẲNG THỨC
a/ Chứng minh rằng: \(\frac{sin4x-sin2x}{1-cos2x+cos4x}=tanx\)( với x là giá trị để biểu thức có nghĩa)
b/ Cho x ≠ k\(\frac{\pi}{4}\) , kϵ Z . Chứng minh đẳng thức sau:\(\frac{1-cos4x}{sin4x}=tanx\)
Chứng minh các đẳng thức sau:
(với x là giá trị để biểu thức có nghĩa)
1/ \(\frac{\sin2x-\sin4x}{1-\cos2x+\cos4x}=-\tan2x\)
2/ \(\frac{\sin4x-\sin2x}{1-\cos2x+\cos4x}=\tan2x\)
sinx-cosx bằng 1 phần 2 tính M bằng sin4x cộng cos4x
GIẢI CÁC PHƯƠNG TRÌNH SAU:
2cos2x+cos2x/2-10cos(5pi/2-x)+7/2=1/2cosx
2cos6x+sin4x+cos2x=0
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN NHIỀU
\(\text{2cos2x+cos^2\frac{x}{2}-10cos(\frac{5\pi}{2}-x)+\frac{7}{2}=\frac{1}{2}cosx}\)
2cos6x+sin4x+cos2x=0
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN NHIỀU