1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
Nếu sinx+cosx=1/2 thì sinx, cosx Bằng
Chứng minh VT=VP:
a) 2.(sinx+cosx+1)2.(sinx+cosx-1)2=1-cos4x
b) \(\frac{\text{3-4cos2a+cos4a}}{3+\text{4cos2a+cos4a}}\)= tan4a
c) (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x
Cần GẤP ạ! Cảm ơn nhiều ạ!
Chứng minh các đẳng thức sau:
(với x là giá trị để biểu thức có nghĩa)
1/ \(\frac{\sin2x-\sin4x}{1-\cos2x+\cos4x}=-\tan2x\)
2/ \(\frac{\sin4x-\sin2x}{1-\cos2x+\cos4x}=\tan2x\)
CMR: \(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{2}{sinx}\)
Chứng minh :
a) 2(1-sinx)(1+cosx) = (1-sinx+cosx)2
b) 1-cos2x/sin2x = tanx
c) 1+cotx+cot2x+cot3x = cosx+sinx/sin3x
Tìm m để hàm số \(y=\sqrt{5\sin4x-6\cos4x+2m-1}\) xác định \(\forall x\)
CHỨNG MINH ĐẲNG THỨC
a/ Chứng minh rằng: \(\frac{sin4x-sin2x}{1-cos2x+cos4x}=tanx\)( với x là giá trị để biểu thức có nghĩa)
b/ Cho x ≠ k\(\frac{\pi}{4}\) , kϵ Z . Chứng minh đẳng thức sau:\(\frac{1-cos4x}{sin4x}=tanx\)