Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Lam Nguyệt

\(3x^2+4x+7-3\left(x-1\right)\sqrt{x^2+x+3}=0\)

Akai Haruma
13 tháng 10 2018 lúc 22:43

Lời giải:

Trước tiên ta thấy:

\(3(x-1)\sqrt{x^2+x+3}=3x^2+4x+7=2x^2+(x+2)^2+3>0\)

\(3\sqrt{x^2+x+3}\geq 0\)

\(\Rightarrow x-1>0\Rightarrow x>1\)

Phương trình đã cho tương đương với:

\(\Leftrightarrow (x^2+x+3)+(x^2-2x+1)-2(x-1)\sqrt{x^2+x+3}+(x^2+5x+3)-(x-1)\sqrt{x^2+x+3}=0\)

\(\Leftrightarrow [\sqrt{x^2+x+3}-(x-1)]^2+\sqrt{x^2+x+3}[\sqrt{x^2+x+3}-(x-1)]+4x=0(*)\)

Có:

\([\sqrt{x^2+x+3}-(x-1)]^2\geq 0\)

\(\sqrt{x^2+x+3}-(x-1)=\frac{x^2+x+3-(x-1)^2}{\sqrt{x^2+x+3}+x-1}=\frac{3x+2}{\sqrt{x^2+x+3}+x-1}>0, \forall x>1\)

\(4x>0, \forall x>1\)

Do đó: \([\sqrt{x^2+x+3}-(x-1)]^2+\sqrt{x^2+x+3}[\sqrt{x^2+x+3}-(x-1)]+4x>0\) (mâu thuẫn với (*))

Vậy pt vô nghiệm.


Các câu hỏi tương tự
Phuonganh Nhu
Xem chi tiết
Angela jolie
Xem chi tiết
Nguyễn Ngọc Nhã Hân
Xem chi tiết
Thiên Dy
Xem chi tiết
Phương Minh
Xem chi tiết
Hoài Dung
Xem chi tiết
Phạm NI NA
Xem chi tiết
prayforme
Xem chi tiết
Nguyen Thuy Linh
Xem chi tiết