\(pt\Leftrightarrow2x^3-3x+1+\sqrt[3]{2x^3-3x+1}=x^2+2+\sqrt[3]{x^2+2}\)
Đặt \(\sqrt[3]{2x^3-3x+1}=a;\sqrt[3]{x^2+2}\)
pt <=> a3 + a = b3 + b
<=> (a3 - b3) + (a - b) = 0
<=> (a - b)(a2 + ab + b2) + (a - b) = 0
<=> (a - b)(a2 + ab + b2 + 1) = 0
Vì a2 + ab + b2 + 1 > 0 ∀ a, b
=> a - b = 0
<=> a = b
\(\Leftrightarrow\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)
<=> 2x3 - 3x + 1 = x2 + 2
<=> 2x3 - x2 - 3x - 1 = 0
Tự giải nốt nhé