20 cho hàm số f(x) =1/x-1. tìm một nguyên hàm F(x) của f(x) biết F(2)=1
21 Biết \(\int\) \(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}dx=a\left(x+2\right).\sqrt{x+2}+b\)(x+1).\(\sqrt{x+1}\) +C. Tính T=3a+b
22 trong ko gian với hệ tọa do oxyz , cho điểm A(1;0;2) .Tọa độ điểm \(A^'\)(A phẩy) là điểm đối xứng của điểm A qua đường thẳng d:x-1/2 = y+1/-1 = z+3/3là
20.
\(F\left(x\right)=\int\frac{1}{x-1}dx=ln\left|x-1\right|+C\)
\(F\left(2\right)=1\Leftrightarrow ln1+C=1\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=ln\left|x-1\right|+1\)
21.
\(\int\frac{1}{\sqrt{x+2}+\sqrt{x+1}}dx=\int\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}dx\)
\(=\int\left(\sqrt{x+2}-\sqrt{x+1}\right)dx=\int\left[\left(x+2\right)^{\frac{1}{2}}-\left(x+1\right)^{\frac{1}{2}}\right]dx\)
\(=\frac{2}{3}\left(x+2\right)\sqrt{x+2}-\frac{2}{3}\left(x+1\right)\sqrt{x+1}+C\)
\(\Rightarrow3a+b=3\left(\frac{2}{3}\right)-\frac{2}{3}=\frac{4}{3}\)
22.
Pt tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-1-t\\z=-3+3t\end{matrix}\right.\)
Pt mặt phẳng (P) qua A và vuông góc d có dạng:
\(2\left(x-1\right)-y+3\left(z-2\right)=0\Leftrightarrow2x-y+3z-8=0\)
Gọi M là giao điểm d và (P) \(\Rightarrow\) tọa đô M thỏa mãn:
\(2\left(1+2t\right)+1+t+3\left(-3+3t\right)-8=0\Rightarrow t=1\)
\(\Rightarrow M\left(3;-2;0\right)\)
A đối xứng A' qua d \(\Leftrightarrow\) M là trung điểm AA' \(\Rightarrow A'\left(5;-4;-2\right)\)