2: \(\left(x^2+2\right)^2\ge4\)
\(\left|x-y+1\right|>=0\)
Do đó: \(-\left(x^2+2\right)^2-3\left|x-y+1\right|\le-4\)
\(\Leftrightarrow A\le2016\)
Dấu '=' xảy ra khi x=0 và y=1
2: \(\left(x^2+2\right)^2\ge4\)
\(\left|x-y+1\right|>=0\)
Do đó: \(-\left(x^2+2\right)^2-3\left|x-y+1\right|\le-4\)
\(\Leftrightarrow A\le2016\)
Dấu '=' xảy ra khi x=0 và y=1
a. Tìm GTNN của các biểu thức sau
A=|x-2013|+|2014-x|
B=|x-123|+|x-456|
C=|x-1|+|x-2|+|x-3|
D=|x-1|+|x-2|+|x-3|+|x-4
b. Tìm GTLN của biểu thức
A=\(\frac{2003}{\left|x\right|+2004}\)
B=\(\frac{\left|x\right|+2003}{\left|x\right|+2002}\)
A=3+\(\left[2x-1\right]\) ,B=x^2+\(\left[3y+5\right]+2\) ,C=2017-(x+1)^2
Tìm GTLN hoặc GTNN CỦA BIỂU THỨC SAU
Tính GTLN của
\(A=-5x^2-4x+1\)
Tính GTNN của
\(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)\)
1,Tìm a\(\in\Sigma\),biết:
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
2,Tìm GTNN của các biểu thức:
a,A\(=\)\(x^4+3x^2+2\)
b,B\(=\left(x^4+5\right)^2\)
c,C\(=\left(x-1\right)^2+\left(y+2\right)^2-2\)
3,Tìm GTLN của các biểu thức:
a,A\(=5-3\left(2x-1\right)^2\)
b,B\(=\frac{1}{2\left(x-1\right)^2+3}\)
c,C\(=\frac{x^2+8}{x^2+2}\)
Tìm x, y thuộc z
|x-5|+|1-x|=\(\frac{12}{y+1+3}\)
|x|+|y|<3
2 Tìm GTLN của
A=\(\frac{2012}{\left|x\right|+2013}\)
B=\(\frac{10}{\left|x\right|+10}\)
3. Cho 2x + y=3. Tìm GTNN của
D=|2x+3|+|y-2|+2
Các bạn ơi giúp mình với
1 . Tìm giá trị nhỏ nhất của biểu thức \(A=2\left|3x-1\right|-4\)
2 . Tìm GTLN của biểu thức \(B=10-4\left|x-2\right|\)
3 . Tìm GTNN của biểu thức \(C=\frac{6}{\left|x\right|-3}\) với x là số nguyên
Tìm GTLN của biểu thức: A=2020 - (x2 + 2)2 - 3.| x - y + 1 |
tìm GTNN của biểu thức:
P = \(\left[{}\left(\frac{-1}{3}\right)^2}x^3+\left(2x^2\right)^2+\frac{1}{2}]-\left[{}x\left(\frac{1}{3}x\right)^2+\begin{matrix}3\\2^3\end{matrix}\right.+x^4]+\left(y-2013\right)^2\)
Tìm GTLN/GTNN nếu có của các đa thức sau:
a. \(f\left(x\right)=5x+x^2-17\)
b. \(g\left(x\right)=-x^2+4x-1\)