Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nucuoicuapi

Tính GTLN của

\(A=-5x^2-4x+1\)

Tính GTNN của

\(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)\)

 Mashiro Shiina
2 tháng 9 2017 lúc 10:10

1)

\(A=-5x^2-4x+1\)

\(A=-5\left(x^2+\dfrac{4}{5}x-\dfrac{1}{5}\right)\)

\(A=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}-\dfrac{9}{25}\right)\)

\(A=-5\left[\left(x+\dfrac{2}{5}\right)^2-\dfrac{9}{25}\right]\)

\(A=-\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{25}\le\dfrac{9}{25}\)

Dấu "=" xảy ra khi:

\(x=-\dfrac{2}{5}\)

2)

\(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)\)

\(A=\left[\left(x-1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]\)

\(A=\left[x\left(x-8\right)-1\left(x-8\right)\right]\left[x\left(x-5\right)-4\left(x-5\right)\right]\)

\(A=\left(x^2-8x-x+8\right)\left(x^2-5x-4x+20\right)\)

\(A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)\)

\(A=\left(x^2-9x+14-6\right)\left(x^2-9x+14+6\right)\)

\(A=\left(x^2-9x+14\right)^2-36\ge-36\)

Dấu "=" xảy ra khi:

\(x^2-9x+14=0\)

\(\Leftrightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)

Vậy...

Nguyễn Thị Hồng Nhung
2 tháng 9 2017 lúc 16:39

\(A=−5x^2−4x+1 \)

=\(-5\left(x^2+\dfrac{4}{5}x-\dfrac{1}{5}\right)\)=\(-5\left(x^2+\dfrac{4}{5}+\dfrac{4}{25}-\dfrac{9}{25}\right)\)

=\(-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\)

Với mọi giá trị của x thì \(-5\left(x+\dfrac{2}{5}\right)^2\)nhỏ hơn hoặc bằng 0

=>\(\dfrac{9}{5}-5\left(x+\dfrac{2}{5}\right)^2\)nhỏ hơn hoặc bằng \(\dfrac{9}{5}\)

Hay Anhỏ hơn hoặc bằng \(\dfrac{9}{5}\)

Để A\(=\dfrac{9}{5}\)thì \(\left(x+\dfrac{2}{5}\right)^2=0\)

=>.\(x+\dfrac{2}{5}=0\)=>\(x=-\dfrac{2}{5}\)

Vậy ....

Theo mk câu 1 bác kia giải sai nhé


Các câu hỏi tương tự
Lê Vũ Anh Thư
Xem chi tiết
thu dinh
Xem chi tiết
Trần Ngọc Hà
Xem chi tiết
Đặng Hoài An
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Hòa Đình
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
Bùi Nam Việt
Xem chi tiết