\(A=1+\dfrac{1}{1+2}+...+\dfrac{1}{1+2+3+...+2012}\)
\(=1+\dfrac{1}{3}+...+\dfrac{1}{2012\cdot2011:2}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2011\cdot2012}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\)
\(=2\cdot\dfrac{2011}{2012}=\dfrac{2011}{1006}\)