Bài toán 8. Cho tam giác ABC nhọn có BC =a,CA=b,AB= c trong đó b—c=a/k;(k>1). Gọi ha,hb,hc lần lượt là độ dài các đường cao hạ từ A,B,C. Chứng minh rằng: 1. 1/ha=k(1/Hb-1/hc) 2. a/sinA=b/sinB=c/sinC và sinA=k(sinB-sinC)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC nhọn, AB=c, BC=a,CA=b
chứng minh: \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
Bài toán 4. Cho tam giác nhọn ABC có BAC = 60° và AB > AC, các đường cao BE,CF (E,F lần lượt thuộc CA, AB). 1. Chứng minh rằng SABC= AB.AC.căn 3/4 và BC^2 = AB^2+AC^2 – AB AC. 2. Chứng minh rằng EF = BC/2và SBCEF = 3SAEF. 3. Gọi M,N lần lượt là trung điểm của BC,EF. Tia phân giác của BAC cắt MN tại I. Chứng minh rằng IM = 2IN và MFI= 30°. Giúp mình câu 2 và câu 3 với ạ mình cảm ơn
Cho tam giác ABC nhọn có AB =c ,AC =b ,BC .
Chứng minh : a)
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}.\)
b)\(S_{ABC}=\dfrac{1}{2}absinC=\dfrac{1}{2}bcsinA=\dfrac{1}{2}acsinB\)
Cho tam giác nhọn ABC, đường cao BE, CF. Gọi SAEF, SABC lần lượt là diện tích của tam giác AEF và tam giác ABC. Chứng minh SAEF/SABC =1-sin2A
cho tam giác ABC có góc B; góc C nhọn, đường cao AH
a) Chứng minh: AH=\(\dfrac{BC}{cotB+cotC}\)
b) Tính SABC, biết BC=4cm; góc B=450; góc C=300
Cho tam giác ABC có AB = 6cm, AC = 4,5cm. BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào ?
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn