1. Thay \(x=1\) vào biểu thức \(4P\left(x\right)=P\left(2x+1\right)+2x+2\)
\(\Rightarrow4P\left(1\right)=P\left(3\right)+4\Rightarrow P\left(3\right)=4P\left(1\right)-4=20\)
Thay \(x=0\) vào:
\(\Rightarrow4P\left(0\right)=P\left(1\right)+2\Rightarrow P\left(0\right)=\frac{P\left(1\right)+2}{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(0\right)=2\\P\left(1\right)=6\\P\left(3\right)=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=2\\a+b+c=6\\9a+3b+c=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=2\end{matrix}\right.\)
Câu 2:
Gọi 2 nghiệm của đa thức là \(n\) và \(n+1\) với n nguyên
\(\Rightarrow P\left(x\right)=\left(x-n\right)\left(x-n-1\right)=x^2-\left(2n+1\right)x+n\left(n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\left(2n+1\right)=9\\n\left(n+1\right)=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=-5\\n\left(n+1\right)=b\end{matrix}\right.\) \(\Rightarrow b=20\)