Sử dụng phương pháp đưa về dạng tích:
\(x^3+y^3=6xy+5\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-6xy=5\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y+2\right)=5\)
\(\Leftrightarrow\left(x+y\right)^3+8-3xy\left(x+y+2\right)=13\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+y\right)^2-2\left(x+y\right)+4-3xy\right]=13\)
Từ đây ta có: \(x+y+2\) và \(\left(x+y\right)^2-2\left(x+y\right)+4-3xy\) là 2 ước số của 13.
Với \(\left\{{}\begin{matrix}x+y+2=1\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\xy=-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(1,-2\right);\left(-2,1\right)\)
Với \(\left\{{}\begin{matrix}x+y+2=13\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=11\\xy=34\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Với \(\left\{{}\begin{matrix}x+y+2=-1\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-3\\xy=\dfrac{32}{3}\end{matrix}\right.\left(loại\right)\)
Với \(\left\{{}\begin{matrix}x+y+2=-13\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-15\\xy=\dfrac{260}{3}\left(loại\right)\end{matrix}\right.\)
Vậy...