a: \(\dfrac{1}{A}=\dfrac{a+b}{a^3+b^3}\)
\(\Leftrightarrow A=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
b: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)
\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-3x-7\right)}{4x-7}\)
\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-7x+4x-7\right)}{4x-7}\)
\(\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)\)
c: \(\left(x^2+1\right)\cdot A=2x^2-3\)
nên \(A=\dfrac{2x^2-3}{x^2+1}\)
d: \(\dfrac{a+2}{a-2}=\dfrac{\left(a+2\right)^2}{A}\)
nên \(A=\dfrac{\left(a+2\right)^2\cdot\left(a-2\right)}{a+2}=\left(a+2\right)\left(a-2\right)=a^2-4\)