1. Thầy giáo có 7 quyển sách toán, 8 quyển sách Vật lí và 9 quyển sách hóa học (các quyển sách cùng loại là giống nhau) dùng để làm phần thưởng cho 12 học sinh, sao cho mỗi học sinh được 2 quyển sách khác loại. Trong số 12 học sinh đó có bạn An và bạn Bình. Tính xác suất để An và Bình có phần thưởng giống nhau
2. Một nhóm gồm 5 bạn nam, 4 bạn nữ và cầu thủ Công Phượng đứng thành 2 hàng mỗi hàng 5 người để chụp ảnh kỉ niệm. Tính xác suất để khi đứng, Công Phượng xen giữa 2 bạn nam đồng thời các bạn nữ không đứng cạnh nhau cùng một hàng
Câu 1:
Gọi số cặp Toán-Lý là x, Lý-Hóa là y, Toán-Hóa là z
Ta có: \(\left\{{}\begin{matrix}x+y=8\\y+z=9\\x+z=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=4\end{matrix}\right.\)
\(\Rightarrow\) Có 3 cặp T-L, 5 cặp L-H, 4 cặp T-H
Số các chia để 2 bạn An và Bình cùng cặp:
\(C_3^2+C_4^2+C_5^2=19\)
Xác suất: \(P=\frac{19}{C_{12}^2}=\frac{19}{66}\)
Câu 2:
Chọn 2 bạn nam và sắp thứ tự vào 2 bên CP: \(A_5^2\) cách
Chọn vị trí cho bộ 3 người này trong 1 hàng: 3 cách chọn
Còn lại 4 nữ và 3 nam, để không có 2 bạn nữ nào xếp cạnh nhau thì hàng còn lại (không có mặt CP) phải có đúng 3 bạn nữ \(\Rightarrow\) hàng CP xếp thêm 1 nam và 1 nữ: có \(2!.4.3=24\) cách
Cách chọn 3 bạn nữ và xếp thứ tự vào hàng còn lại: \(A_3^3\)
Xếp 2 bạn nam xen kẽ vào 3 bạn nữ: \(2!\) cách
Vậy có tổng cộng: \(A_5^2.3.24.A_3^3.2!=...\)
Xác suất: số nào đó :D