cho a , b , c là độ dài 3 cạnh của 1 tam giác . cm
a. a2 + b2 + c2 < 2.( ab + bc + ca )
b. a/b+c-a + b/a+c-b + c/a+b-c ≥3
3. Cup x,y,z >0 thỏa mãn x+y+z < hoặc bằng 6. Cm
1/x + 1/y + 1/z > hoặc bằng 3/2
4. Cho x,y,z >0. Cm
x/y + y/z + z/x > hoặc bằng 3
Cho x,y,z >0 thỏa mãn điều kiện x+y+z <=6
Chứng minh :
1/x + 1/y + 1/z >= 3/2
5. Cho a,bc >0 thỏa mãn abc=1
Cm: (a+1).(b+1).(c+1) > hoặc bằng 8
6. Cm
1/1.3 + 1/3.5 + 1/5.7 +...+ 1/ (2n-1).(2n+1)< 1/2
Cho 2 số x,y thỏa mãn điều kiện x+y=2. Cminh x^4+y^4 >= 2
Cho a + b + c = 1 . Chứng minh rằng :
ab + bc + ca < \(\dfrac{1}{2}\)
Chứng minh rằng với mọi số a, b, c ta luôn có:
a. a2 + b2 \(\ge\) 2ab
b. a2 + b2 + c2 \(\ge\) ab + bc + ca
1. Chứng minh rằng:
a. \(\dfrac{a^2+b^2}{2}\)≥(\(\dfrac{a+b}{2}\))2
b. \(\dfrac{a^2+b^2+c^2}{3}\)≥(\(\dfrac{a+b+c}{3}\))2
2. Chứng minh rằng:
a. a2+\(\dfrac{b^2}{4}\)≥ab
b. (a+b)2≤ 2(a2+b2)
c. a2+b2+1 ≥ ab+a+b
3. Chứng minh rằng: a2+ 5b2-(3a+b) ≥ 3ab-5
chứng minh:
a+b+c ≥ ab+ac+bc