1. Chứng minh BĐT
a, a2+b2+c2>hoặc bằng ab+ac+bc
b, a2+b2+c2 > hoặc bằng a.(b+c)
2. Cho 2 số x,y thỏa mãn điều kiện x+y=2
Chứng minh: x4+y4 > hhoặc bằng 2
Cho a,b,c khác 0 . Chứng minh rằng:
ab/c + bc/a + ca/b \(\ge\) a+b+c
Cho a + b + c = 1 . Chứng minh rằng :
ab + bc + ca < \(\dfrac{1}{2}\)
Chứng minh rằng với mọi số a, b, c ta luôn có:
a. a2 + b2 \(\ge\) 2ab
b. a2 + b2 + c2 \(\ge\) ab + bc + ca
1. Chứng minh rằng:
a. \(\dfrac{a^2+b^2}{2}\)≥(\(\dfrac{a+b}{2}\))2
b. \(\dfrac{a^2+b^2+c^2}{3}\)≥(\(\dfrac{a+b+c}{3}\))2
2. Chứng minh rằng:
a. a2+\(\dfrac{b^2}{4}\)≥ab
b. (a+b)2≤ 2(a2+b2)
c. a2+b2+1 ≥ ab+a+b
3. Chứng minh rằng: a2+ 5b2-(3a+b) ≥ 3ab-5
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
1.Cho các số dương a,b. Chứng minh rằng \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)≥\(\dfrac{4}{a+b}\)
2. Cho a,b,c là các số thực không âm. Chứng minh rằng (a+b)(b+c)(c+a)≥8abc
cho a , b , c là độ dài 3 cạnh của 1 tam giác . cm
a. a2 + b2 + c2 < 2.( ab + bc + ca )
b. a/b+c-a + b/a+c-b + c/a+b-c ≥3