Cho hình chữ nhật ABCD có AB = 6cm, BC = 8cm. Vẽ BH vuông góc với AC (H \(\in\) AC )
a) C/m: \(\Delta\)BHC \(\sim\) \(\Delta\)CDA
b) Tính diện tích \(\Delta\)BHC
c) Gọi M, B lần lượt là trung điểm của AH và BH, tia MN cắt BC tại E. Chứng minh \(\Delta\)CEH \(\sim\) \(\Delta\)CMB
Cho hình thang ABCD(BC//AD, BC< AD). Gọi M, N là điểm chuyển động trên 2 cạnh AD, BC sao cho AM/BN = k. Cmr:
a) Đường thảng MN cắt AC và BD thứ tự tại E và F
b) Tìm giá trị của k để đường thẳng MN đi qua giao điểm I của 2 đường thẳng AB và CD
Bài 3: Cho hình thang ABCD (AB//CD) có AB=6cm. CD=12 cm. Gọi M là trung điểm của AD. Qua M kẻ đường thẳng song song với hai đáy AB, CD cắt AC, BC lần lượt tại 1 và N. Tính độ dài MI, MN.
giúp mình với
Cho hình thang ABCD (AB//CD) có cscs đường chéo AC và BD cắt nhau tại O. Qua O kẻ các đường thẳng song song với AB cắt cạnh bên AD và BC theo thú tự tại E và F. Gọi I và J thứ tự là trung điểm của AB và CD. CMR
a) ED/AD+BF=1
b) OE=OF
c) O,I,J thẳng hàng
1. Cho tam giác ABC vuông tại A, có AB = 15cm, đường cao AH = 12cm.
a) Tính BH, CH, AC
b) Lấy E thuộc AC, F thuộc BC sao cho CE = 5cm, CF = 4cm. CM : tam giác CEF vuông.
c) CM : CE.CA = CF.CB
2. Cho hình thang ABCD (AB//CD), hai đường chéo cắt nhau tại I.
a) CM : tam giác IAB đồng dạng tam giác ICD.
b) Đường thẳng qua I song song với hai đáy của hình thang cắt AD, BC tại M và N. CM: IM = IN.
c) Gọi K là giao điểm của AD và BC. CM : KI đi qua trung điểm của AB và CD.
Cho tam giác ABC vuông tại A có góc ABC bằng \(60^0\)
phân giác BD . Gọi M,N,I theo thứ tự là trung điểm của BD< BC< CD
a. Tứ giác AMNI là hình gì? Chứng minh.
b. Cho AB =4cm. Tính các cạnh của tứ giác AMNI.
Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.