1. Áp dụng quy tắc khai phương 1 thương, tính:
\(\frac{3\sqrt{128}}{\sqrt{2}}\)
2. Tính:
a. (\(\left(\sqrt{32}-\sqrt{50}+\sqrt{8}\right):\sqrt{2}\)
b. (\(5\sqrt{48}-3\sqrt{27}+2\sqrt{12}\)):\(\sqrt{3}\)
c. \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
d. \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
e. \(\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
f. \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
1.\(\frac{3\sqrt{128}}{\sqrt{2}}=\frac{\sqrt{9.128}}{\sqrt{2}}=\sqrt{\frac{1152}{2}}=\sqrt{576}=24\)