3:
\(\widehat{AOC}+\widehat{AOD}=180^0\)(hai góc kề bù)
=>\(\widehat{AOD}+47^0=180^0\)
=>\(\widehat{AOD}=133^0\)
\(\widehat{AOC}=\widehat{BOD}\)(hai góc đối đỉnh)
mà \(\widehat{AOC}=47^0\)
nên \(\widehat{BOD}=47^0\)
\(\widehat{AOD}=\widehat{BOC}\)(hai góc đối đỉnh)
mà \(\widehat{AOD}=133^0\)
nên \(\widehat{BOC}=133^0\)
4: \(\widehat{AOD}+\widehat{AOC}=180^0\)(hai góc kề bù)
=>\(\widehat{AOC}+110^0=180^0\)
=>\(\widehat{AOC}=70^0\)
\(\widehat{AOD}=\widehat{BOC}\)(hai góc đối đỉnh)
mà \(\widehat{AOD}=110^0\)
nên \(\widehat{BOC}=110^0\)
\(\widehat{AOC}=\widehat{BOD}\)(hai góc đối đỉnh)
mà \(\widehat{AOC}=70^0\)
nên \(\widehat{BOD}=70^0\)